Fast radio interferometric measurement on low power COTS radio chips

A. Bata, A. Bíró, Gy. Kalmár and M. Maróti University of Szeged, Hungary

TÁMOP-4.2.2.A-11/1/KONV-2012-0073: Telemedicine oriented research in the fields of mathematics, informatics and medical sciences

Localization Ontology

Physical phenomena:

- radio (GPS, radar, WiFi, etc)
- acoustic (ping, ultrasonic)
- optical (pics, video, laser)
- inertial (accelerometer, gyro)
- magnetic & pressure

Ranging:

- time based (TOF, TDOA)
- amplitude based (RSSI)
- map based (RSSI)
- angle based
- phase based

Tradeoffs:

- precision (proximity vs. cm)
- coverage (global vs. local)
- responsiveness (immediate)
- infrastructure (anchors)
- stealth and security (yes/no)
- mobile vs. static
- processing (centralized/local)
- localization vs. tracking
- indoor vs. outdoor

Localization Ontology

Physical phenomena:

- radio (GPS, radar, WiFi, etc)
- acoustic (ping, ultrasonic)
- optical (pics, video, laser)
- inertial (accelerometer, gyro)
- magnetic & pressure

Ranging:

- time based (TOF, TDOA)
- amplitude based (RSSI)
- map based (RSSI)
- angle based
- phase based

Tradeoffs:

- precision (proximity vs. cm)
- coverage (global vs. local)
- responsiveness (immediate)
- infrastructure (anchors)
- stealth and security (yes/no)
- mobile vs. static
- processing (centralized/local)
- localization vs. tracking
- indoor vs. outdoor

Today: radio interferometric sensor tracking indoors

Radio Interferometric Ranging

 $(d_{AC} - d_{BC} + d_{BD} - d_{AD}) \mbox{ mod } \lambda = \varphi_{CD} \mbox{ mod } 2\pi$

- Two transmitters (A and B) simultaneously send unmodulated sine waves at slightly different frequencies
- The interference is a high frequency amplitude modulated by a low frequency beat signal
- Two receivers (C and D) measure the phase of the beat signal at the same time
- Relative phase offset depends on the distances between A, B, C and D

Radio Interferometric Ranging

- Test mode of COTS radio gives unmodulated sine wave
- Beat signal can be measured as signal strength (RSSI)
- Quad range: linear combination of four ranges
- Outdoor experiment:
 - 100 x 120m on football field
 - 16 XSM (CC1000) nodes
 - 400-460 MHz carrier
 - Avg. localization error: 4cm
 - Took 50 minutes long

Indoor Radio Interferometry

- Outdoor solution does not work indoors
- Phase error depends on carrier frequency
- CC1000 radio is no longer available
- IDEA:
 - RFA1 vs. CC1000
 - 2.4 GHz vs. 430 MHz
 - Single freq tracking
 - Significant speedup
 - TDMA like schedule

Step 1: Sensor and RF Measurement

- UCMote Proton A DRD
- Atmega128RFA1 primary radio with chip antenna
- 8-bit 16 MHz microcontroller
- 128 KB ROM, 16 KB RAM

- IEEE 802.15.4 compliant COTS radio chip
- Test mode: unmodulated wave
- Fixed carrier frequencies
 need 50-100 KHz offset
 - trim the load capacitance
 - Unpredictable carriers: ±40 KHz
 - Slow reset (switch to test mode)
- Measure RSSI signal
 - \circ $\,$ designed for CCA and LQ $\,$
 - low resolution (28 steps)
 - good refresh rate (500 KHz)
- One measurement: 1 ms

Step 2: Signal Processing

Low resolution (28 steps) Time synchronization default is not precise Ο use rising edge Unpredictable beat freq depends on carrier offset we expect 20-100 KHz • Dynamic range depends on TX powers very small (1-5 steps) Device dependent noise 0.65 ms processing time

Step 3: Distributed Schedule

٩	RS	тх	тх	тх	TS	тх	RX	RX	RS	тх	RX	RX	RS	тх	RX	RX	RS
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

В	RS	ТΧ	RX	RX	RS	ТΧ	ТΧ	ΤХ	TS	RX	ТΧ	RX	RS	RX	ΤХ	RX	RS
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

С	RS	RX	ΤХ	RX	RS	RX	ΤХ	RX	RS	ΤХ	тх	тх	TS	RX	RX	ΤХ	RS
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

D	TS	RX	RX	тх	RS	RX	RX	ΤХ	RS	RX	RX	тх	RS	ΤХ	тх	ΤХ	TS
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Step 4: Time Synchronization

- Periodically send synchronization messages to keep in sync
- Scheduling of measurements on different motes (50 µs precision)
- Messages can be lost, motes turned on/off, local time drifts

Step 5: Data Extraction and Timing

SLOT ID	PERIOD1		PERIOD N	PHASE 1		PHASE N	TIME- STAMP
---------	---------	--	-------------	------------	--	------------	----------------

- All measurements (8-bit period and 8-bit phase) in a frame are packed into a single synchronization message
- Data is arriving out of order to the base station
- Measurement timing
 - Single measurement: 1 ms
 - Synchronization msg: 2.5 ms
 - Processing and runtime overhead: 3 ms
 - SuperFrame (4 sync msg, 12 measurements): 25 ms
 - One relative phase per pair of transmitters: 12.5 ms (80 Hz)

Step 6: Sort Data on Basestation

Step 7: Calculate Relative Phases

- Find matching pair of absolute phase measurements
- Filter out incorrect measurements
 - different error codes from signal processing unit
 - the two periods are not close enough
- Calculate relative phase: this is between 0 and 2π
- Unwrap relative phases to a number
 - Calculate speed (difference of two consecutive relative phases)
 - Filter out big speed jumps
 - Integrate to get unwrapped phase
- The unwrapped phase is the level on the surface with the hyperbolic geodesics

Demo:

Relative Phase

Unwrap Phase

Thank you!

TÁMOP-4.2.2.A-11/1/KONV-2012-0073: Telemedicine oriented research in the fields of mathematics, informatics and medical sciences

Hungarian Government

INVESTING IN YOUR FUTURE